PPAR-alpha activation required for decreased glucose uptake and increased susceptibility to injury during ischemia.
نویسندگان
چکیده
The transcription of key metabolic regulatory enzymes in the heart is altered in the diabetic state, yet little is known of the underlying mechanisms. The aim of this study was to investigate the role of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in modulating cardiac insulin-sensitive glucose transporter (GLUT-4) protein levels in altered metabolic states and to determine the functional consequences by assessing cardiac ischemic tolerance. Wild-type and PPAR-alpha-null mouse hearts were isolated and perfused 6 wk after streptozotocin administration or after 14 mo on a high-fat diet or after a 24-h fast. Myocardial d-[2-(3)H]glucose uptake was measured during low-flow ischemia, and differences in GLUT-4 protein levels were quantified using Western blotting. In wild-type mice in all three metabolic states, elevated plasma free fatty acids were associated with lower total cardiac GLUT-4 protein levels and decreased glucose uptake during ischemia, resulting in poor postischemic functional recovery. Although PPAR-alpha-null mice also had elevated plasma free fatty acids, they had neither decreased cardiac GLUT-4 levels nor decreased glucose uptake during ischemia and, consequently, did not have poor recovery during reperfusion. We conclude that elevated plasma free fatty acids are associated with increased injury during ischemia due to decreased cardiac glucose uptake resulting from lower cardiac GLUT-4 protein levels, the levels of GLUT-4 being regulated, probably indirectly, through PPAR-alpha activation.
منابع مشابه
The Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study
Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...
متن کاملThe PPAR-alpha activator fenofibrate fails to provide myocardial protection in ischemia and reperfusion in pigs.
Rodent studies suggest that peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activation reduces myocardial ischemia-reperfusion (I/R) injury and infarct size; however, effects of PPAR-alpha activation in large animal models of myocardial I/R are unknown. We determined whether chronic treatment with the PPAR-alpha activator fenofibrate affects myocardial I/R injury in pigs. Domestic...
متن کاملUpregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart.
UNLABELLED Genes encoding enzymes involved in fatty acids (FA) and glucose oxidation are transcriptionally regulated by peroxisome proliferator-activated receptors (PPAR), members of the nuclear receptor superfamily. Under conditions associated with O(2) deficiency, PPAR-alpha modulates substrate switch (between FA and glucose) aimed at the adequate energy production to maintain basic cardiac f...
متن کاملActivation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury.
BACKGROUND Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is expressed in the heart and regulates genes involved in myocardial fatty acid oxidation (FAO). The role of PPAR-alpha in acute ischemia/reperfusion myocardial injury remains unclear. METHODS AND RESULTS The coronary arteries of male mice were ligated for 30 minutes. After reperfusion for 24 hours, ischemic and infarct ...
متن کاملThiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart.
Obesity is associated with risk factors for cardiovascular disease, including insulin resistance, and can lead to cardiac hypertrophy and congestive heart failure. Here, we used the insulin-sensitizing agent rosiglitazone to investigate the cellular mechanisms linking insulin resistance in the obese Zucker rat heart with increased susceptibility to ischemic injury. Rats were treated for 7 or 14...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 6 شماره
صفحات -
تاریخ انتشار 2005